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Abstract. A conceptual problem concerning the distinction between absorption and scatter- 
ing is clarified. Some difficulties that have arisen in the literature are due to the neglect 
of interference terms between different radiation processes. The usual way of computing 
opacities as a sum of contributions due to scattering, free-free-absorption, etc, is not strictly 
valid. Accurate calculation of spectral lineshapes is possible with two general, but 
apparently not widely known, formulae given in this paper. These formulae are evaluated, 
in the dipole approximation, for the special case of cyclotron absorption and scattering in 
uniform magnetic fields. 

1. Introduction 

Resonant scattering of light is a well known phenomenon playing an important role 
in atomic spectroscopy, plasma physics and astrophysics. Stimulated by the discovery 
of cyclotron lines in x-ray pulsars (Trumper er a1 1978) the analogous process involving 
cyclotron radiation in strong magnetic fields has recently attracted much interest (see 
MCszaros 1984 and references therein). Radiation processes in magnetic fields merit 
a careful theoretical investigation because many of the complexities of atomic physics 
can be sidestepped, and the fundamental problem brought into a sharper focus. On 
the other hand, a uniform magnetic field makes the problem just complex enough so 
that the underlying basic physics is not obscured by some popular but deceptive 
simplifications (like, e.g., the dipole approximation or the use of polarisation averages). 

Here we encounter the following curious problem. While the usual Feynman rules 
give us a well defined scattering cross section due to electrons with a particular speed, 
the total opacity is formally infinite, if one integrates over the electron velocity 
distribution. This is, of course, due to the appearance of a ‘resonant denominator’, 
and the usual remedy is to add an imaginary part, iy, corresponding to the finite 
lifetime of the intermediate state. While this recipe provides a very useful approxima- 
tion, it also creates several new problems. One of them is the question as to what 
choice for y gives the most accurate results. At least two different prescriptions can 
be found in the literature. Ventura (1979) uses a damping proportional to the square 
of the photon frequency, whereas, e.g., Kirk and MCszhros (1980) use a y that is 
independent of frequency. The difference is important only in the far wings of the 
cyclotron line, where Ventura’s choice appears to be more accurate, whereas the 
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alternative is perhaps more plausible, because i t  is the inverse lifetime of the excited 
state. 

A more serious problem is the fact that introducing a damping term blurs the 
distinction between absorption and scattering (Melrose 1981). Although it is physically 
obvious that absorption followed by re-emission is equivalent to scattering, it is not 
clear how to d o  the book-keeping right. We cannot simply ignore cyclotron processes, 
because we need them to compute the Landau level populations. We cannot ignore 
the scattering terms because they dominate over the pure cyclotron cross section in 
the far wings. Finally, we cannot just add cyclotron and scattering coefficients, because 
this would give the wrong opacity (the value in the line core would be doubled). 

Of course, it is possible to circumvent this problem by using physical intuition to 
make various ad hoc changes in the kinetic equations, e.g., by dropping some terms 
in the rate equations (the kinetic equation for the electrons) while retaining them in 
the transfer equation (the kinetic equation for the photons). This is the approach 
adopted in most previous work on this problem. Cooper et al (1983) discussed a 
related problem in the context of atomic lines. 

A natural starting point for the discussion of these issues would appear to be the 
set of Boltzmann equations for electrons and photons, e.g., as they were written down 
by Kirk and  Melrose (1986). However, these equations are meaningful only if a clear 
distinction between absorption/scattering and other processes can be made. Unfortu- 
nately, expansion in powers of the coupling constant (which appears in y )  renders 
the kinetic coefficients meaningless, because they are not integrable. How can the 
different processes occurring in the plasma be consistently described? What is the true 
cyclotron lineshape, from the core into the wings? It is my aim in this paper to clarify 
some of these conceptual difficulties, and  to show how the opacity can be computed, 
at least in principle. 

2. Application of the fluctuation/dissipation theorem 

Information about the interaction between radiation and a medium is contained in 
the dielectric tensor. The absorption coefficient can be derived from the antiHermitian 
part of this tensor or, equivalently, from the conductivity tensor. As is well known, 
the fluctuation/dissipation theorem can be used to express the conductivity tensor in 
terms of the current-current correlations, leading to a so-called Kubo formula (Ziman 
1969). Kubo foJmulae were first derived for systems near thermal equilibrium (linear 
response) but it seems that a variant of the fluctuation/dissipation theorem can also 
be applied to systems far from equilibrium, e.g., in plasma physics when dealing with 
non-Maxwellian electron velocity distributions (Sitenko 1967, equation (2.70)). For 
the sake of completeness, I give here an outline of the derivation. 

Integrating the von Neumann equation for the density matrix of the electron system, 
d p / d t  = (i /h)[p,  H’], one finds to first order in the perturbation H’: 

(1) 

The perturbing potential is H ’ ( r )  = -Jd’xA,(x, t ) j , ( x ,  t ) .  The current density, j,, is 
related to the current operator j :  in the absence of the external field by j ,  = 
j :  - ( e ’ / m )  NAP, where N is the total electron density. Multiplying (1) with the current 
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density operator and taking the trace one finds 

using the cyclic invariance of the trace. ( I  have simplified the notation by not making 
the integration over x’  and  the summation over v explicit.) The dielectric tensor can 
then be expressed in the form 

- j * , ( O ,  O)j@(X, t ) ) .  (4) 

Here, wp = (Ne’/s,m)’’’ would be the plasma frequency if all electrons were free, and  
it is assumed that the medium is statistically homogeneous and  stationary (on the 
microscopic scale). But no other assumption is necessary about the initial state density 
matrix p ( - c ~ ) ,  i.e. the system need not be near thermal equilibrium. I believe that it 
is possible to treat also very intense light beams (laser light), since we are free to 
consider a strong field A,(x, t )  as part of the ‘unperturbed’ system, and  to study an  
infinitesimally small additional ‘test field’. (Of course, in such a case the current 
correlations may be hard to calculate.) 

Taking now the antiHermitian part of the dielectric tensor (for w > O ) ,  we find the 
following Kubo formula for the absorption coefficient (in m-’) of a wave with polaris- 
ation vector e@ : 

Here we have assumed that the plasma is so tenuous that the refractive index is close 
to 1. Similarly, the emissivity (W m-3 Hz-’ sr-’) can be written 

It is perhaps worth pointing out that stimulated emission terms are included in ( 5 ) ,  
but not in (6). These terms always occur together with absorption terms; in fact, the 
current commutator in (5) can be interpreted as ‘absorption’ minus ‘stimulated 
emission’. The emissivity (6) includes only spontaneous emission-it would be a 
mistake to add  stimulated emission here. 

In  the theory of spectral lineshapes it is customary to express the absorption 
coefficient as a Fourier integral of the dipole-moment autocorrelation function (van 
Vleck and  Huber 1977, Mihalas 1978). The equations here are more general, because 
they take account of spatial dispersion and  describe the angular and  polarisation 
dependence properly. The divergence problems mentioned in the introduction are 
solved in a very natural way-they are just the result of too simple an  approximation 
for the current-current correlations: since the unperturbed electron propagators are 
used, the correlations persist to infinity, whereas it is physically clear that in reality, 
due  to interactions with photons, the correlations must eventually decay. Hence the 
Fourier integrals are always well defined, if physically reasonable approximations to 
the current-current correlations can be found. 
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In  what follows I shall assume that the equations ( 5 )  and (6) are general, and show 
how the usual expressions for cyclotron absorption and emission and for scattering 
can be derived from them as special cases. This is to verify that these formulae can 
in fact be used ( in  a more or less straightforward way) to calculate the opacities for 
free electrons in a magnetic field. But this approach is not limited to free electrons; 
the application to atoms is just slightly more involved (see, e.g., Baym 1969, ch 13). 

3. The quantum field-theoretical machinery 

In the evaluation of the correlation functions special attention must be paid to the 
ordering of the operators. The ‘closed timepath’ formalism is useful for doing this; 
information can be found in several recent reviews (Chou eta1 1985, Rammer and 
Smith 1986, Landsman and van Weert 1987). I use 1.. .I to indicate time ordering 
along a closed timepath extended over ‘forward’ times _t from --CO to +-CO, and over 
‘backward’ times f from +-CO to --CO. Denoting by T the usual time-ordering operator 
and by ? its conjugate, we have 

UA(_t)B(_t’)ll =TA( t ) B ( t ’ )  

[A( I )B(_t ‘ ) j  = A( t ) B (  t ’ )  

I[A(_t)B( ?)I = * B (  t’)A( t )  

[A( I ) B (  ?)I =?A( t ) B (  t ’ )  

(7) 

i.e. all backward times f are considered ‘later’ than all forward times _t‘. Correlation 
functions can then be formally defined by, e.g., 

(j,(x, t ) j , (O,  0)) = j,(x, I ) j p ( O ,  0) exp -ih-’ dt’ H ’ ( t ’ )  (U ( f In) (8) 
where H ’ ( t ‘ )  is the perturbing potential, d t  = jTm d_t -j:= di, and the time ordering 
ensures that in the expansion of the exponential all operators fall in the right place. 
The correlation functions in ( 5 )  and (6) above are special cases with one time on the 
forward and the other on the backward branch. 

As usual, the current-density operator can be expressed in terms of the creation 
and annihilation operators: 

For simplicity we shall consider in this paper only ‘electrons’ without spin, and with 
charge - e  (i.e. e > O ) .  The current correlations can then be calculated from 

(Uj,(x, O j J O ,  011) 
- - -$ [ (V,,-V,,+ieA,,+ieA,,) 
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Wick's theorem allows the decomposition into single-particle Green functions: 

(u9+(~)9(~)~~(~)9(~)n)  
= (u9(~)y~(~)n) (u~(~)y- (~)n)  

+ (uy (~)9~(~)n ) (uy (~)~~(~)n ) .  ( 1 1 )  
The 'thermal' Green functions, G(2, 1 )  = - i ( [9(2)9+( l)]), contain information both 
about how the particles move and which states are occupied (Kadanoff and Baym 
1962). For a non-relativistic non-degenerate magnetised electron plasma at temperature 
T = 1/p we can write 

G ( r 2 ,  t, r I r  0) =i"p(r,Ie-iP""H I r l ) - i 0 , ( t ) ( r 2 ~ e - i 1 H ~  rl)  (12) 
with a simple generalisation e,( t2 - t l )  of Heaviside's step function to times on the 
closed timepath (Chou et ul 1985). Here, and in (14) below, we set h = 1. The chemical 
potential p is related to the particle density by 

and the exponentials e - iHr  involve just combinations of free particle and harmonic 
oscillator propagators (Feynman and Hibbs 1965): 

IrJ ( r2 I e -i P t i  I i H 

This formula is, of course, gauge dependent; ( A x ,  A,, A,) = (0, Bx, 0) was adopted. 
Substitution into the equations (10) and ( 1 1 )  above will lead to the well known 
non-relativistic expressions for the cyclotron absorption coefficient. 

Another primary ingredient of the quantum field-theoretical technique is the photon 
propagator/density matrix: 

(uA,(x, ~ ) A , ( o ,  o m  

+ ~ ~ ~ u ~ ~ u ~ ~ ~ ~ (  t )  eii  k x - w l i  + ~ , , U ~ ~ U ~ ~ O , (  - t )  e-i(kx-wri I. ( 1 5 )  
Here, ppq is the expectation value of ais,, where a i  creates a photon in the polarisation 
mode p ,  and up is the polarisation vector of that mode. Expressed in terms of the 
more conventional Stokes parameters, these numbers are 

when I, 0, U, V are measured in W m-' Hz-l sr-l. 
These expressions are given here just to give an idea of what is involved in the 

'closed timepath' formalism, and to show that the formalism is able to accommodate 
all those complications which we are going to ignore in what follows. My main concern 
here is to illustrate the potential of the method. 



412 W Nagel 

4. Cyclotron absorption and emission 

To simplify the following discussion we shall now disregard spatial dispersion, i.e. let 
k + 0 .  If we can treat the electrons as an ideal gas we have 

d3x(j,(x, t ) j , (o,O)) = Ne' (v , ( f ) v , (O) )  (17) 

and we are left with the much simpler velocity correlations. The velocity operators 
can be defined as 

m v , = p , + e A , .  (18) 
- 

It will be convenient to use rotating coordinates, U, = (U, * iv,.)/J2. The operators U, 
can serve as ladder operators (Canuto and Ventura 1977), i.e. U+ moves an electron 
to the next-higher Landau level, and U- moves it down by one. They satisfy the 
commutation relation 

h w ,  
[U-, U+]=- m 

and they allow the Hamiltonian to be written in the form 

H = m v + u - + $ m v ~ .  (20) 

(u+(t)u-(O)) = ( n ) ( h w , / m )  exp(iwBt) (21) 

(U-( t)v+(O)) = ( n  + 1)( hoe/ m )  exp( - h e t )  (22 )  

( u : ( r ) u : ( O ) ) =  T / m  (23) 

If the electron gas is in thermal equilibrium (at temperature T ) ,  it is easy to see that 

where we have switched to Heisenberg operators, u , ( t )  = v,exp(*iw,t), U,(?) = U,, and 
have denoted the mean Landau quantum number by (n) = l/[exp( hue/  T )  - 13. All 
other velocity correlations vanish. 

The coefficient of cyclotron absorption is then 

d t  elwr ezey(uw(  t)v,(O) - v,(O)v,(t)). 

In the sum only two terms are non-zero: 

h W B  

m 
(u+(t)v-(O) - u-(o)v+(r)) =- [ ( n ) - ( n  + l)]  exp(iwBt) 

(v-(r)v+(O)-u+(O)v-(t))=---[(n+ m l ) - (n) ]  exp(-iw,t). (26) 

Since opacities are meaningful only for positive frequencies, we can ignore the first 
term, whose Fourier transform is proportional to 6 ( w  + w e ) .  We are left with 

h 
m 

= 4 7 ' ~ ~  - NI e- I ' 6 ( w  - we) .  
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(My convention is to transform to rotating coordinates after taking the complex 
conjugate, so that the polarisation component e$ is in fact the complex conjugate of 
e - . )  Given all the simplifications, the formula is the best expression we can obtain 
for the cyclotron absorption coefficient. The first term proportional to ( n  + 1) can be 
attributed to ‘absorption’, the second one containing (n)  to ‘stimulated emission’. Apart 
from a factor hw3/477?c’ it is identical to the emissivity 

h’ w 

mc’ 
E = cy - N (  n ) I e.. 1 ’ 6 ( w - 

which describes ‘spontaneous emission’. This is, of course, the well known relation 
between Einstein’s A and  B coefficients. 

It is a curious fact that, when spatial dispersion is ignored ( k  + 0), the cyclotron 
absorption cross section is independent of the occupation of the Landau levels. A 
‘population inversion’ appears to be impossible, because above every Landaulevel 
there is another one with a still larger transition matrix element (proportional to J n  + 1).  
However, when the current correlations are considered, instead of the velocity correla- 
tions, a maser effect becomes indeed possible, and is of course well known in plasma 
physics (electromagnetic cyclotron instability). 

5. Scattering 

At frequencies different from the cyclotron frequency other processes, notably scatter- 
ing, contribute to the opacity. How can this be derived from the Kubo formula ( 5 ) ?  
The basic idea is very simple. Let the electron be in the field of a wave and calculate 
how the radiation perturbs the velocity fluctuations. The procedure is thus very similar 
to the usual prescription for calculating a scattering cross section: take an incident 
wave, compute the perturbed motion of the system, and find out how the perturbed 
system radiates. The present formalism is different, however, in the sense that we are 
not interested in the amplitude of the scattered wave, but shall calculate directly the 
intensity (more precisely, the Stokes parameters) of the scattered light. 

It is here that we need the ‘closed timepath’ formalism described briefly in § 3. For 
the unperturbed velocity correlations we have 

(0 u, ( t )  v,(O)R) = ( hwB/ m )(n)[ 6,+6,,-exp(iwB0 + 6,-&+exp( - iwBt ) l  

+ (hw,/m)[O,(-~)S,+S,- exp(iwBt) + O0(t)6,-S,+ exp(-iw,t)] 

+ ( T l m ) ~ , A ~ .  (29) 

u p ( [ )  = q ( t ) + ( e / m ) A , ( f )  (30) 

The true velocities are given by 

where A ( t )  is the field oi’ the wave at the position of the electron. Note that the 
homogeneous magnetic field is already included in v ( t )  by virtue of the definition (18). 
What we need to compute, then, is 

( U U , ( ~ ) U ~ ( O ) R ) A  = ( u U , ( t ) u L m n ) A  + ( e /  m)(UAp(t)uLz(0)D)A 

The perturbing radiation field also appears implicitly in the expansion of 
+ ( e /  m)(lu, ( w L , ( 0 m A  + ( e ’ /m’ ) ( [ IA , ( t )Ay(o )D) , .  (31) 
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with H’( 1 ’ )  = eA( t ‘ ) u (  r ’ ) .  To reproduce the usual expressions for the scattering 
coefficient it is sufficient to expand up to second order in A: 

-2 $ dt,  + dt2 (uu, ( t ) v ,  ( tI)nmL ( t l , ~ p ( t 2 ) n ) ( u ~ p ( t 2 ) ~ ~ ( o ) n )  (34) h2  

where the last term is the sum of two identical terms resulting from the application of 
Wick’s theorem to the last term in (33). 

In the following, we shall consider cold plasma, i.e T = 0, (n) = 0, and retain only 
terms proportional to the incident flux, Fo (in W m-.’). Then we are left with 

(U u, ( t ) u,(O)D) = -[S,-6,+@,( t )  exp( - iwBt)  + 6,+6,-@,( - t )  exp(iw,t )]  (35) 
h W B  

m 
and 

if the incident wave is completely polarised and has the polarisation vector e@. The 
convolution integrals in (34) are easily performed using the identities 

d t ’  exp[ -io2( t 2  - t ’)] exp[ 4 w I (  t ’  - t ,)I = 0 (37) f 
1 dt’  exp[-iw,(tz- t ’ )]@,( t ’ -  t l )  exp[-iw,(t’- t l ) ]  = exp[-iw2(tz- tl)l 

w 2  - w I  - io 

i 
w1  -w2+i0 

(38) 

dt’ @,( r2 - t ’ )  exp[-iw,( t 2  - t ’ ) ]  exp[-iw,( t ’ -  tl)] = exp[-iwl(t2- 4)l 

(39) 
which are valid for t ,  , r 2  both on the forward or backward time branches. One then finds 

+ 
= -i Fo[ (S,-e-  O B  +S,+e+ wB+w+iO)e:  W B  e-iw‘ 

2mw’ w B - w  -io 
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) e, e-'"' W B  W B  
- - -i Fo[ (S,+e$ + S,-eT 

2mw2 O B  - w +io W B + W  -io 

w,+w+iO 
Poch2 W B  

= -i- 2m2w2 Fo[ (S,-e- w , - w - i o  + & + e +  

W B + W  -io 
+ 6,-eT W B  

wg - w + io 

W B  

W B +  w - io+ w B -  w +io  

W B  + S,-e- W B - w - i O  ) e'.']. (42) w g + w + i O  

Combining these results into (34) one finds, after a little algebra, the velocity fluctuations 

where, anticipating that we need to calculate the emissivity for positive frequencies, 
we have retained only the terms containing e-'"'. 

Applying now the Kubo formula (6) we find for the scattered light: 

- e ?  2.rrS(w'-w). (45) ) ( w g - w + i O  w , + w - i o  
"B W B  x &,+e$ + S,_eT 

Integrating over the frequency w'  of the scattered light, and dividing by the incident 
flux Fo and the density of particles N, we arrive at the differential scattering cross section 

d u  a 2 h 2  O B  W B  

dR - m2c2 w,+ w +io w B - w  -io ek*e+ + e>*e- - e;* e, 

W B  W B  +eke! 
wg - w + io W B +  w -io 
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Introducing the tensor 

*B * B  

wB+w+iO w, -w- iO  n,, = 8," - s,,s,,- - s,-s,,+ 

(47) 
O I  1 T , - , L  

= [*/(* +;*+io1 0 
0 */(*-*,+io) 0 

0 

the cross section can be written in a form 

This agrees with the result obtained by Ventura (1979). In contrast to the more 
conventional approach, the present formalism leads directly to the square of the matrix 
element for scattering. The second and third term in (34) can be interpreted as the 
interference terms between the 'seagull diagram' (contained in the first term) and the 
other diagrams (Kirk and  MCsziros 1980). 

It was easier to rederive the scattering cross section from the emissivity formula 
(6)  but the opacity formula ( 5 )  could have been used as well. Then it would have 
been necessary to include the vacuum contributions in the photon field density matrix 
(15) that were omitted in the simplified correlation function (36). Since the dependence 
on the time branch dropped out of the velocity fluctuations (43) above, ([U,( I ) u , ( O ) ] )  = 
([u,(t)uy(6)n), the commutator in the opacity formula will vanish. This is because of 
the simplifying assumptions that we have made. Stimulated scattering into the beam 
with flux F,, will be exactly compensated by scattering from that beam. 

6. Conclusions 

We have seen that a line profile (for cyclotron absorption) and a continuum opacity 
(for scattering) can be derived from the same fundamental formula. It is reasonable 
to expect that, without the drastic simplifications made above, the Kubo formulae ( 5 )  
and (6) will give accurate spectral lineshapes. They seem to be very general and provide 
a unified description of all radiation processes occurring in a plasma. Moreover, they 
appear to be the only way of arriving at  meaningful expressions for opacity and  
emissivity. While the usual way of computing opacities as a sum of contributions due  
to different processes (absorption, scattering, two-photon processes, etc.) leads to useful 
approximations when one process is dominant, it leads to inconsistencies when several 
processes are considered together, as discussed in § 1. It is a mistake just to add  the 
squares of Feynman diagrams for different processes-the Kubo formulae incorporate 
the interference terms between them in a natural way. 

The distinction between absorption and  scattering is, strictly speaking, unphysical. 
There is no  way of distinguishing a scattering process from absorption followed by 
re-emission. The Kubo formulae make it superfluous to worry about this distinction 
because they contain all radiation processes (if  we evaluate the current correlation 
functions with enough care). There is only one observable extinction coefficient, given 
by (51, and a separation of various radiation processes is meaningless. The Boltzmann 
equations, which depend on such a separation, should therefore not be applied to this 
problem. 
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The cross sections obtained in 09 4 and 5 are, of course, not new results. What I 
hope to have shown is that the Kubo formulae are both fundamental and useful. The 
calculation of the scattering cross section in § 5 may appear unnecessarily complicated 
but the standard approach, if one uses the Stokes parameter formalism, also involves 
much algebra (see, e.g., Chou 1986). Our calculations were aided by the especially 
simple properties of a uniform magnetic field. But quantum field-theoretical methods 
must, of course, be applicable also to atoms. For realistic computations of differential 
scattering cross sections ('redistribution functions', e.g., Hubeny and Oxenius (1987)) 
further improvements of the calculational technique seem desirable. Basically, the 
method is straightforward, and  perhaps not even difficult to implement in a computer 
code. 

There is no answer to the question as to what is the correct value for the damping 
coefficient y. Any y can only be approximate, because it corresponds to a partial 
summation of the perturbation series implied by the formal definition (8) of the current 
correlations. The value of y that leads to the best approximation for the opacities will 
in general depend on the radiation field. Thus the computation of opacities becomes 
coupled to the solution of the radiative transfer equation. This complication becomes 
even more severe when multiphoton processes are important, e.g., in model calculations 
for x-ray pulsars (Kirk et a1 1986). In such problems it may prove to be easier to work 
directly with the correlation functions ( [ A , ( x ,  t)A,(O, O ) ] )  and ( [ j , ( x ,  t) jY(O, O ) ] ) ,  rather 
than the more usual photon and  electron distribution functions to which they are 
related. Of course, instead of the Boltzmann equations it is necessary to use more 
general transport equations, i.e. equations of motion for the correlation functions 
(Kadanoff and Baym 1962, Chou eta1 1985). These equations will merit further 
investigation. 
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